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Abstract. We present for the first time a complete solution to the problem of proving
the correctness of a concurrency control algorithm for collaborative text editors against
the standard consistency model. The success of our approach stems from the use of com-
prehensive stringwise operational transformations, which appear to have escaped a formal
treatment until now. Because these transformations sometimes lead to an increase in the
number of operations as they are transformed, we cannot use inductive methods and adopt
the novel idea of decreasing diagrams instead. We also base our algorithm on a client-server
model rather than a peer-to-peer one, which leads to the correct application of operational
transformations to both newly generated and pending operations. And lastly we solve the
problem of latency, so that our algorithm works perfectly in practice. The result of these
innovations is the first ever formally correct concurrency control algorithm for collaborative
text editors together with a fast, fault tolerant and highly scalable implementation.

1. Introduction

Collaborative text editors have something of a convoluted history. The idea was first pub-
licly mooted in 1968 by Turing Award winner Douglas Engelbart in his landmark demo that
posthumously became known as “The Mother of all Demos” [Eng68]. Some twenty years
later the first paper on a concurrency control algorithm appeared, although no correctness
proof was given [EG89]. Indeed the algorithm was found to be incorrect and partial al-
ternatives were proposed, this time along with correctness proofs [Cor95, RNRG96]. The
standard consistency model was also defined around this time [SYZC96]. However, in spite
of the plethora of algorithms and implementations that followed, the problem of proving the
correctness of a concurrency control algorithm against this consistency model seems never
to have been solved.

We briefly outline some of the issues behind this. To begin with, formally correct char-
acterwise operational transformations remained elusive until relatively recently [IOR03]
whilst formally correct stringwise operational transformations cannot be found in the lit-
erature at all. We think the unreasonable correctness criteria put upon operational trans-
formations by peer-to-peer algorithms in particular are part of the reason for this. In
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fact despite their inherent complexity peer-to-peer algorithms have nearly always been pre-
ferred [VCFS00, OUI05, WUM10] and have persisted up until the present. Other consis-
tency models have now also been proposed [LL05, LL07, SS09, LPS09, LL10], no doubt in
response to an inability to prove the correctness of any algorithm against the standard one,
and these cloud the picture. Lastly, modern collaborative platforms such as Google Docs
require complex data types other than plain text, and this complicates things still further.

Our solution addresses all of these issues. Firstly, we give a common-sense and com-
prehensive definition of stringwise operational transformations, we think for the first time.
Secondly, we base our algorithm on the client-server model, which we feel is more appropri-
ate to a modern Internet setting. Thirdly, when we prove correctness against a consistency
model, we do so against the standard one, which, if a consistency model is needed at all, is
adequate. Lastly, we work only with plain text documents and their attendant inserts and
deletes, but solve this problem completely.

In what follows, for the most part we give the details of our algorithm and demonstrate
its correctness first, before outlining the concepts and contributions to be found elsewhere.
Our reason is this: our algorithm was conceived in a vacuum, so to speak, without knowledge
of the surrounding literature, and we think that this approach contributed at least in part to
a successful outcome. Whilst we do not espouse such an approach in general, we nonetheless
feel that it has it merits, and we feel that for this reason it is more natural to present our
algorithm in line with the way in which it was conceived. We also hope that its correctness
can be shown to be self-evident without recourse to consistency models and the like.

Finally a note on the naming of our algorithm and its utility. We chose ‘Concur’
because as well as being a fragment of ‘concurrency’, it is also an antonym of ‘differ’. This
seemed appropriate given that algorithms such as ours are in some sense the opposite of
those such as the ‘diff3’ algorithm, itself recently formalised [KKP]. This algorithm will flag
conflicts when attempting to merge changes. On the other hand our algorithm will always
merge changes without conflicts, with the result that the resultant document may appear
be nonsensical in places. This trade-off means that our algorithm and ones like it are hardly
suitable for version control systems, however they find a use in real-time collaborative text
editors, where the nonsensical parts can immediately be edited by users.

Acknowledgements. Thank you to Jeroen Ketema for pointing out that decreasing
diagrams are the best way to extend the proof of the equivalence τ ; ρ\τ ≡ ρ; τ\ρ from single
operations to sequences of operations.

2. Operational transformations

In this section we define our stringwise operational transformations. We do this informally
first, taking two of the less obvious cases as examples, and then define them formally for
each case. The main result of the section is that these definitions lead to the combined
effect of any two operations executed sequentially being the same regardless of the order in
which the operations are executed, provided that the second is suitably transformed relative
to the first. Our operational transformations also preserve the intention of each individual
operation, however we leave a proof of this until subsection 5.3.

Consider then two users making concurrent changes to a document. The first deletes
four characters, the second inserts two. After applying their own operations to their doc-
ument, each user applies the other’s. These operations need to transformed before being
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Figure 1: Operational transformations when an insert splits a delete.

applied a second time if their effect is to be preserved, however. Figure 1 illustrates the
requisite transformations. On the left, the insert must be moved one character to the left.
On the right, the delete must be split in two, something we consider to be unavoidable
if its intention is to be preserved. The splitting of deletes in cases like this sometimes
leads to an increase in the number of operations as they are transformed, a process we call
fragmentation.

One way to avoid fragmentation, adopted in [RNRG96] and in the majority of attempts
since, is to consider each stringwise operation as a sequence of characterwise operations
which cannot be split any further. We think this is wholly impractical. Another approach,
adopted in [Cor95], is not to preserve the effect of the insert at all. Figure 2 illustrates
these transformations. On the left, the insert is transformed into the empty operation. On
the right, the transformed delete simply deletes the inserted string. This approach also
mitigates against fragmentation because the transformed delete no longer has to be split
in two, but at the expense of effectively throwing away the insert or, in other words, not
preserving its intention. By contrast, our approach is not to compromise and to stick with
what we call a comprehensive definition of stringwise operational transformations, even if
this leads to fragmentation.

The other case that deserves mention is the case when one delete splits another. Figure 3
illustrates the transformations. On the left, the first delete when transformed becomes the
empty operation, since all of the characters it was to delete have been deleted already. On
the right, as in the first case, the transformed delete is split in two, however the two resulting
deletes lie immediately next to each other once the other delete is applied, and can therefore
be treated as one operation. This result has interesting consequences, in particular proving
correctness in a more general setting turns out to be impossible without it.

Now let τ and ρ be two arbitrary operations. We define τ\ρ as the operation or
operations that result when τ is transformed relative to ρ, and vice versa for ρ\τ . We can
then state the combined effect of any two operations executed sequentially being the same
regardless of the order in which they are executed, provided that the second is suitably
transformed relative to the first, as the following equivalence:

τ ; ρ\τ ≡ ρ; τ\ρ (2.1)

In the remainder of this section we give formal definitions of operational transformations for
all cases, define what is meant by two operations or sequences of operations being equivalent,
then prove that this equivalence always holds.
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Figure 2: Less than ideal operational transformations for an insert versus a delete.

Definition 2.1. Let Σ be a non-empty, finite set of characters from some alphabet. A
string is any finite sequence of characters from Σ, ranged over by s, s′ and so on. The
length of a string s, written |s|, is the length of this sequence. The set of these strings is
written Σ∗ and the set of non-empty strings Σ+. We define the substring s[n...m] to be the
string formed by taking the n’th to the m − 1’th characters of the string s inclusive. We
also make use of the abbreviations s[...m] = s[0...m] and s[n...] = s[n...|s|]. We write s′+ s′′

for the concatenation of strings s′ and s′′ in the usual sense of the word.

We define the syntax of operations as follows:

Definition 2.2. The operations τ , ρ and so on range over the following set:

{i(n, s)|n ∈ N, s ∈ Σ+} ∪ {d(n, l)|n ∈ N, l ∈ N+}
Definition 2.3. The operation ε ranges over the following set:

{e()}
Intuitively i(n, s) is an insert, d(n, l) a delete and e() is the operation that does nothing,

otherwise known as the empty operation. We say that inserts and deletes have position n.
We define the effects of operations as follows:

Definition 2.4. i(n, s), d(n, l) and e() are partial functions, defined only for suitable strings,
in which case we have:

i(n, s′) : Σ∗−→Σ+

s 7−→ s[...n] + s′ + s[n...]

d(n, l) : Σ+−→Σ∗

s 7−→ s[...n] + s[n+ l...]

e() : Σ∗−→Σ∗

s 7−→ s

By a suitable string s we mean n 6 |s| in the case of inserts, n+ l 6 |s| in the case of deletes
and any string in the case of the empty operation.

Definition 2.5. Two single operations are equivalent, that is τ ≡ ρ, if and only if τ(s) =
ρ(s) for any string s suitable for both τ and ρ.
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Figure 3: Operational transformations when one delete splits another.

So equivalence is defined in terms of the effect of the operations in question. It is easy
to check that τ ≡ ρ precisely when τ and ρ are identical syntactically.

We next extend the notion of equivalence to sequences of operations.

Definition 2.6. Consider two sequences of operations τ1; τ2...; τm and ρ1; ρ2...; ρm. We de-
fine them as being equivalent, that is τ1; τ2...; τn ≡ ρ1; ρ2...; ρn, if an only if τm(...τ2(τ1(s))) =
ρn(...ρ2(ρ1(s))) for any suitable string s. By suitable we mean not only that τ1(s) and ρ1(s)
are defined, but also τ2((τ1(s)), ρ2(ρ1(s)) and so on.

Before continuing we make two points. The first point is that the notions of effect and
equivalence here have nothing to do with the meaning of the underlying content. We hope it
goes without saying that any treatment concerned with preserving meaning of this content,
however this meaning might be defined, is a treatment of an entirely different problem to
the one solved here. The second point is really an excuse for the definitions and results
that follow. They are laborious, however a faithful implementation requires them. We
nonetheless encourage the disinterested reader to move on to the next section.

Definition 2.7.

xi(n, s) = n i(n, s)y = n+ |s| − 1

xd(n, l) = n d(n, l)y = n+ l − 1

We call xτ and τy the corners of τ , taking the right corner to be the position of the last
character underneath the operation, so to speak. For example, in figure 4 the left and right
corners of the delete are 1 and 4, respectively.

Definition 2.8.
τ << ρ iff τy < xρ

τ < ρ iff (xτ < xρ) ∧ (τy > xρ)

τ ' ρ iff (xτ = xρ) ∧ (τ 6= ρ)

τ > ρ iff (xτ 6 ρy) ∧ (τy > ρy)

τ >> ρ iff xτ > ρy

These definitions formalise the idea of one non-empty operation overlapping another,
regardless of whether the operations are inserts or deletes. Intuitively τ ' ρ when τ and
ρ start in the same place but are not equal, τ < ρ when τ starts to the left of ρ but they
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Figure 4: The reasoning behind the equivalence τ\ρ ≡ τ−; τ+ ↑ ρ ↓ τ− when τ covers ρ.

overlap, and τ << ρ when τ starts to the left of ρ but they do not overlap. Similarly for
τ > ρ and τ >> ρ.

Lemma 2.1. For any two differing operations τ and ρ, exactly one of the relations in
definition 2.8 will hold.

Next we define a series of partial transformations for inserts and deletes that formalise
the idea of one non-empty operation being shifted one way or the other by another.

Definition 2.9. For two inserts i(n1, s1) and i(n2, s2) with n1 > n2:

i(n1, s1) ↑ i(n2, s2) = i(n1 + |s2|, s1).
For a delete d(n1, l1) and insert i(n2, s2) with n1 > n2:

d(n1, l1) ↑ i(n2, s2) = d(n1 + |s2|, l1).
Definition 2.10. For two deletes d(n1, l1) and d(n2, l2) with n1 > n2 + l2:

d(n1, l1) ↓ d(n2, l2) = d(n1 − l2, l1)
For an insert i(n1, s1) and delete d(n2, l2) with n1 > n2 + l2:

i(n1, s1) ↓ d(n2, l2) = i(n1 − l2, s1)
Intuitively τ ↑ ρ is τ shifted to the right by the length of ρ when ρ is an insert; and

τ ↓ ρ is τ shifted to the left by the length of ρ when ρ is a delete. Note the restrictions
on the relative positions of the operations in each case. There is never a need to shift an
operation to the right by the length of an insert if that operation is already to its left.
Similarly there is never a need to shift an operation to the left by the length of a delete
unless that operation is to its right.

Finally we define partial transformations that split or crop one non-empty operation
relative to another. The motivation for these can be seen in figure 4 again. Compare this
with figure 1, where the various steps involved in transforming the delete relative to the
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insert were left to the imagination. Figure 4 on the other hand makes these steps explicit.
The delete is first subdivided, and then the right side must be further shifted twice. The
result, as expected, is that the transformed delete operation will delete the same characters,
albeit either side of the inserted characters, that the original delete operation would have
deleted were the insert operation not to be applied first. Its intention is preserved, in other
words.

Definition 2.11. For two deletes d(n1, l1) and d(n2, l2):

d(n1, l1)−d(n2, l2) =

{
d(n1, n2 − n1) n1 < n2 n2 < n1 + l1 6 n2 + l2

d(n2 + l2, n1 + l1 − n2 − l2) n1 + l1 > n2 + l2 n2 6 n1 < n2 + l2

Intuitively if τ overlaps ρ either to the left or the right, then τ − ρ is τ with that part
overlapping with ρ chopped off.

Definition 2.12. For a delete d(n1, l1) and an insert i(n2, s2):

d(n1, l1)
− = d(n1, n2 − n1)

d(n1, l1)
+ = d(n2, l1 − n2 + n1)

}
n1 < n2 n1 + l1 > n2 + |s2|

Definition 2.13. For two deletes d(n1, l1) and d(n2, l2):

d(n1, l1)
− = d(n1, n2 − n1)

d(n1, l1)
+ = d(n2 + l2, n1 + l1 − n2 − l2)

}
n1 < n2 n1 + l1 > n2 + l2

Intuitively if τ covers ρ, then ρ splits τ into τ− and τ+. If ρ is an insert, the split takes
place at the position of ρ and none of τ is lost. If ρ is a delete, only the parts of τ on either
side of ρ are kept. Note that we drop any reference to ρ in these definitions, but it is always
clear what ρ is from the context.

We are now in a position to prove the main result of this section.

Theorem 2.1. For any two single operations τ and ρ and for suitable definitions of the
transformed operations τ\ρ and ρ\τ , equivalence 2.1 holds.

Proof. We break the proof down into cases.
When τ and ρ are both inserts, we set τ = i(n1, s1), ρ = i(n2, s2). Without loss of

generality suppose that n1 6 n2. We treat the case when n1 < n2 first, in which case we set
i(n1, s1)\i(n2, s2) = i(n1, s1) and i(n2, s2)\i(n1, s1) = i(n2, s2) ↑ i(n1, s1). For any suitable
s we then have:

(i(n1, s1); i(n2, s2)\i(n1, s1))(s) = (i(n1, s1); i(n2 + |s1|, s2))(s)
= i(n2 + |s1|, s2)(s[...n1] + s1 + s[n1...])

= s[...n1] + s1 + s[n1...n2] + s2 + s[n2...]

= i(n1, s1)(s[...n2] + s2 + s[n2...])

= (i(n2, s2); i(n1, s1))(s)

= (i(n2, s2); i(n1, s1)\i(n2, s2))(s)
For the sake of the reader who has gotten this far we omit similar proofs from now on.

To continue, the case when n1 = n2 is more subtle. We assume that there is some lexico-
graphical ordering on the strings, that is for two strings s1, s2 ∈ Σ∗ we have s1 < s2, s1 = s2
or s1 > s2. When s1 = s2 the transformations need do nothing for equivalence 2.1 to hold.
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Figure 5: Transforming a sequence of operations τ = τ1; τ2 relative to a single operation ρ.

Without loss of generality suppose now that s1 < s2 and set i(n1, s1)\i(n2, s2) = i(n1, s1)
and i(n2, s2)\i(n1, s1) = i(n2 + |s1|, s2). These transformations result in the lexicographi-
cally lesser of the two operations remaining in place whilst the other is shifted to the right,
regardless of the order of application, and so again equivalence 2.1 holds. Hence in all the
cases when both τ and ρ are inserts, equivalence 2.1 holds.

From now on we just state the transformations in each case, leaving the proofs to
interested readers. These are easily done along the lines of figure 4.

When τ and ρ are both deletes, we only need to consider the cases when τ = ρ, τ ' ρ
with xτ < xρ, τ < ρ with τy < ρy, τ < ρ with τy = ρy, τ < ρ with τy > ρy, or τ << ρ.
Symmetry takes care of the remaining cases. In the case when τ = ρ, it suffices to set
τ\ρ = ρ\τ = ε. In the case when τ << ρ, it suffices to set τ\ρ = τ and ρ\τ = ρ ↓ τ . The
other cases are a little more involved. In the case when τ ' ρ and τy < ρy we set τ\ρ = ε
and ρ\τ = (ρ − τ) ↓ τ . In the case when τ < ρ with τy < ρy we set τ\ρ = τ − ρ and
ρ\τ = (ρ − τ) ↓ τ again. In the case when τ < ρ with τy = ρy we set τ\ρ = τ − ρ and
ρ\τ = ε. Only the case when τ covers ρ remains, namely when τ < ρ with τy > ρy. Here we
set τ\ρ = τ−; τ+ ↓ ρ ↓ τ− and ρ\τ = ε, noting again that the first of these transformations
results in a single transformed operation, not two. Hence in all the cases when both τ and
ρ are deletes, equivalence 2.1 holds.

When τ is a delete and ρ an insert, we need to consider the cases τ >> ρ, τ > ρ,
τ ' ρ, τ < ρ, or τ << ρ. The relative positions of the right corners of the operations do
not come into account. In the cases when τ >> ρ, τ > ρ, or τ ' ρ we set τ\ρ = τ ↑ ρ and
ρ\τ = ρ. In the case when τ < ρ we set τ\ρ = τ−; τ+ ↑ ρ ↓ τ−, as illustrated in figure 4,
and ρ\τ = ρ ↓ τ−. Finally, in the case when τ << ρ we set τ\ρ = τ and ρ\τ = ρ ↓ τ . Hence
in all the cases when τ is a delete and ρ an insert, equivalence 2.1 holds.

The trivial observation that if τ is an insert and ρ a delete we simply swap the symbols
above completes the proof.

3. Decreasing diagrams

In this section we prove that equivalence 2.1 can be extended to the cases when τ and ρ
each represent sequences of operations rather than just one. We then use this result to
devise a method that transforms one sequence of operations relative to another.

To begin with we consider the simplest case of when τ is a sequence of two operations
τ1; τ2 whilst ρ remains a single operation. Figure 5 shows a representation of this case that
turns out to be useful. Here solid edges represent single operations, dashed edges possibly
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Figure 6: Tranforming one sequences of operations τ = τ1; τ2 relative to another ρ = ρ1; ρ2.

two. From theorem 2.1 we know that the left hand side of this representation commutes.
However we cannot as yet prove that the right hand side commutes, because ρ\τ1 is not
necessarily a single operation. Therefore we cannot prove that the representation as a whole
commutes.

Now we go on to consider the general case when both τ and ρ are sequences of operations
of arbitrary length, split in two. Thus τ becomes τ1; τ2 and ρ becomes ρ1; ρ2. Figure 6 shows
the representation. Note that all the edges are dashed, since no assumptions are made about
the lengths of the sub-sequences. At this point we clearly have no way of proving that any
part let alone the whole of this representation commutes. Nonetheless, bearing in mind that
τ1, τ2, ρ1 and ρ2 are just labels, then if the representation commutes it should be possible
to extend equivalence 2.1 to the following:

τ1; τ2; (ρ1; ρ2)\(τ1; τ2) ≡ ρ1; ρ2; (τ1; τ2)\(ρ1; ρ2) (3.1)

In order to prove this equivalence we put it to one side for now and streamline the represen-
tations. We do away with the arrows, since the direction is always clear. We do away with
naming the edges at all, in fact, although we label them as being deletes or inserts. Since an
insert is still an insert when transformed, and a delete is also still a delete or possibly two
deletes when transformed, we only need to label the topmost and leftmost edges. We also
do away with dashed edges, splitting the edges instead when necessary. There are two slight
caveats. The first is that a delete may end up being the empty operation when transformed
relative to another delete. We therefore introduce deletes of length zero at this stage to
avoid having to re-label the edges. The second is that deletes are not necessarily split by
inserts, however we assume that they always are and thus cover the worst case scenario.
We call the resultant streamlined representations diagrams, after [KvOdV00].

In fact our diagrams represent abstract rewriting systems and the property of our
earlier representations being commutative can be restated as these diagrams being Church-
Rosser. Diagrams with topmost and leftmost edges representing single operations are called
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Figure 7: Infinite sequences of sub-diagrams and the “squared paper” argument.

elementary, and it turns out that we have already proved that they are Church-Rosser. All
we need do is to re-state theorem 2.1 diagrammatically, so to speak.

Theorem 3.1. The following elementary diagrams are Church-Rosser:

i

i

d

i

i

d

d

d

If all the elementary diagrams contained in a diagram are Church-Rosser, then the
diagram is said to be weakly Church-Rosser. Furthermore Newman’s lemma [New42] in
this context means that if a weakly Church-Rosser diagram contains no infinte sequences
of elementary diagrams, in which case it is known as terminating, then it is Church-Rosser.
Figure 7 (a) illustrates a somewhat unlikely, partially drawn diagram containing infinite
sequences of elementary diagrams that is weakly Church-Rosser. The labels have been
omitted, indeed no labelling would make sense. For example, the right-most and bottom-
most edges of the largest elementary diagram are both split, and as such it does not match
one of the four available elementary diagrams listed in theorem 3.1. A little experimentation
with these should convince that it is impossible to construct such infinite sequences. What
we do next is make this intuition precise.

It turns out that we are already in a position to show that these diagrams are Church-
Rosser. We simply note that we are dealing with discrete data that cannot be split in-
definitely. If we imagine the length of the topmost and leftmost edges of any elementary
diagram to be proportional to the length of operations they represent, and then divide the
bottom-most and right-most edges accordingly if one of these operations is a delete that
has been split or shortened when transformed, the resulting diagrams could be drawn on
squared paper with no elementary diagram ever being smaller than a square. Figure 7 (b)
illustrates an example of this argument, which perhaps could be stated a little more fully
and precisely, but really does not need to be. By this argument we have:
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Figure 8: The choice of two elementary diagrams commutes.

Theorem 3.2. Equivalence 2.1 holds in the case when the data is discrete and τ and ρ
each represent sequences of operations rather than just one.

Next, we prove that our diagrams are Church-Rosser in what could be called continuous
case, that is without any recourse to the fact that the data is discrete. The justification for
this is that the more painstaking arguments involved lead to insights and besides, have an
intrinsic value of their own.

Before proceeding we make one further observation, namely that our proof will require
that diagrams are filled in in a particular way, which we go on to define, whilst it is possible
that they could be filled in in many different ways. In [KvOdV00] the authors acknowledge
this fact, but claim that it is not hard to see that the same diagram results regardless of the
way in which it is filled in. As justification for this they show that if there is a choice of two
elementary diagrams to be filled in at any stage, then the order of the choices commutes,
as illustrated in figure 8. Whilst this fact is evidently true, we feel that the argument itself
deserves a closer look. In the case of infinite diagrams, for example, it is possible to fill
in an infinite sequence of elementary diagrams without ever reaching other parts of the
diagram. Whatever the case, we define a systematic way of filling in what we call maximal
sub-diagrams. We then define a unique maximal diagram and show that any diagram is a
subset of this. We are then free to fill in diagrams in any way we choose.

Lemma 3.1. For any two sequences of non-empty operations there exists a nested sequence
of unique maximal sub-diagrams.

Proof. Given the two sequences we construct a grid, labelling its edges according to the
types of the operations. To fill in the grid we define a simple algorithm. We place a pointer
at the bottom, right hand corner of the grid. If we cannot move it to the left, we are
done. Otherwise we move it to the left until we encounter either the right-most edge of an
elementary diagram or the leftmost edge of the grid. Next we move it up until we encounter
the bottom-most edge of an elementary diagram or the topmost edge of the grid. When we
cannot move the pointer up any further we have reached what we call a corner. Each corner
is bounded to the left and on top by existing elementary diagrams or edges of the grid and
we therefore have but one choice in filling in the next elementary diagram. Once done, we
place the pointer at the top, right corner of the elementary diagram we have just filled in. If
it is a corner, we fill in another elementary diagram and move the pointer as before. When
we cannot fill in any more corners, either we can move the pointer up in search of the next
corner, or we have reached the right-most edge of the grid, in which case we have completed
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Figure 9: The stages of a simple diagram being filled in.

what we call a stage. We then place the pointer at the bottom, right hand corner of the grid
again, this time we working up initially and then to the left and down, filling in corners as
we go until we have completed a stage in the other direction. We then repeat these stages
alternately, creating a nested sequence of unique maximal sub-diagrams.

Figure 9 illustrates an example of this algorithm in progress. Solid discs represent the
position of the pointer at the beginning of each stage, quarter circles represent corners
against the previous stage’s maximal sub-diagram. These are filled in with elementary dia-
grams to make the stage’s maximal sub-diagram. We say these elementary diagrams border
the previous maximal sub-diagram. The algorithm may run indefinitely. In figure 7 (a), for
example, it appears to have completed roughly six stages.

Implicit in all of this is is our definition of a diagram:

Definition 3.1. A diagram is a sequence of elementary diagrams each of which fills in a
corner.

So we define diagrams a sequences of elementary diagrams rather than just sets. Note
that two distinct diagrams may have the same set of elementary diagrams, but filled in in a
different order. Note also that we will abuse the definition a little in what follows, talking
of one diagram being the subset of another diagram if its corresponding set of elementary
diagrams is a subset of the other’s. In fact we have abused it already in talking of a nested
sequence of maximal sub-diagrams. Moving swiftly on, we define what we call a unique
maximal diagram and then give the lemmas we need:

Definition 3.2. The maximal diagram is the unique sequence of elementary diagrams
generated by the algorithm, whether or not it terminates.

Lemma 3.2. Any maximal sub-diagram is a subset of the maximal diagram.

Lemma 3.3. Any finite diagram is the subset of a maximal sub-diagram.

Proof. By complete induction on the sequence. Since the first elementary diagram of this
sequence always occupies the top, left corner of the grid, it must be the same as the first
elementary diagram of the first maximal sub-diagram and the base case is proved. Now
consider the k + 1’th elementary diagram of the sequence. Our induction hypothesis is
that the diagram consisting of the first k elementary diagrams is the subset of say the l’th
maximal sub-diagram. Then there are two cases. Either the k + 1’th elementary diagram
is in the l’th maximal sub-diagram in which case we are done, or it is not. If not, it fills in
a corner that borders the l’th maximal sub-diagram and therefore must be in the l + 1’th
maximal sub-diagram and again we are done.
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Lemma 3.4. Any finite diagram is a subset of the maximal diagram.

Proof. This follows from lemmas 3.2 and 3.3.

So we are free to fill in diagrams in any way we choose. Now we build up to the main
result of this section.

Definition 3.3. A row is a diagram with one operation along its leftmost edge. It is said
to start with this edge. It’s length is the number of operations along its topmost edge.
Similarly for columns.

Lemma 3.5. The number of operations along the bottom-most edge of a row starting with
an insert is at most double the number of operations along its topmost edge. Similarly for
columns.

Proof. By induction on the length of the row. The base case is easy. Now consider a row of
length k+ 1 starting with an insert. It can only start with one of two elementary diagrams,
one of which has one operation along its bottom-most edge, the other two:

i

d

i

By the induction hypothesis the number of operations along the bottom-most edge of
the remaining row of length k is at most double the number of operations along its topmost
edge and thereore the number of operations along the bottom-most edge of the whole row
of length k + 1 is at most double the number of operations along its topmost edge.

Lemma 3.6. The number of operations along the topmost and bottom-most edges of a
row starting with a delete is equal. Similarly for columns.

Proof. By induction on the length of the row. The base case is easy. Now consider a row of
length k + 1 starting with a delete. If the first topmost operation is a delete, the opposite
edge to the starting edge of the first elementary diagram is a single delete and we can apply
the induction hypothesis to the remaining row of length k. If on the other hand the first
topmost operation is an insert, the opposite edge to the starting edge of the first elementary
diagram consists of two deletes:

d

d

d
i

We apply the induction hypothesis carefully. The row starting with the first of these
two deletes has k operations along its topmost edge. By the induction hypothesis it has k
operations along its bottom-most edge. This bottom-most edge is the topmost edge of the
other row. By the induction hypothesis this also has k operations along its bottom-most
edge. Therefore the whole row has k + 1 operations along its bottom-most edge.
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There are several ways to proceed from here. We simply prove that the number of
operations along the edges of the diagram remains finite. Or to put it another way, the
number of operations no more than doubles with each row or column.

Lemma 3.7. A diagram with R rows and nR operations along its topmost edge has at
most 2R × nR operations along its bottom-most edge.

Proof. By induction on the number of rows and by lemmas 3.5 and 3.6.

Lemma 3.8. A diagram with C columns and nC operations along its leftmost edge has at
most 2C × nC operations along its right-most edge.

Proof. By induction on the number of columns and by lemmas 3.5 and 3.6.

Definition 3.4. A diagram is terminating if it contains no infinite sub-sequences of ele-
mentary diagrams.

Observation 3.1. A diagram is terminating if and only if it has a finite number of opera-
tions along its right-most and bottom-most edges.

Corollary 3.1. Our diagrams are terminating.

Proof. A result of lemma 3.7, lemma 3.8 and the previous observation.

Theorem 3.3. Our diagrams are Church-Rosser.

Proof. Our diagrams are locally Church-Rosser by theorem 3.1, terminating by corollary 3.1
and therefore, by Newman’s lemma, Church-Rosser.

Interestingly, we cannot do without the fact that deletes do not split deletes:

Counter-example 3.1. If a delete splits a delete, our diagrams are not Church-Rosser.

d

d d

What use is this fancy formalism? What it means is that given sequences of operations
τ and ρ, the transformation τ\ρ can be computed. To see why, we note that the existence of
the elementary diagrams in theorem 3.1 asserts a priori that their bottommost and rightmost
edges can be computed. Since our diagrams always exist regardless of the combinations of
inserts and deletes in each sequence, the transformations can be computed. To see how,
based on the representation in figure 6 we suggest the following reductions:

ρ\(τ1; τ2) ρ\τ1\τ2
(τ1; τ2)\ρ τ1\ρ; τ2\(ρ\τ1)

(τ1; τ2)\(ρ1; ρ2) τ1\ρ1\ρ2; τ2\(ρ1\τ1)\(ρ2\(τ1\ρ1))
We now outline a method by way of an example. Suppose that τ1, τ2 and ρ are single
operations and we wish to transform ρ relative to τ1; τ2. With the above reductions to hand
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we give a series of steps that reduce ρ\(τ1; τ2) to sequence of operations:

ρ\(τ1; τ2) ρ\τ1\τ2
= (ρ′; ρ′′)\τ2
 ρ′\τ2; ρ′′\(τ2\ρ′)

We walk through the steps. To begin with we employ the first reduction. Then since ρ and
τ1 are single operations we can compute ρ\τ1. Let us say it becomes ρ′; ρ′′ where ρ′ and ρ′′

are single operations. Next we employ the second reduction and then, since ρ′ and τ2 are
single operations we can compute ρ′\τ2, which we leave as is. Next we note that ρ′ must
be a delete and therefore τ2\ρ′ must be a single operation, therefore we can also compute
ρ′′\(τ2\ρ′) and we are done.

Our method therefore consists of a single recursive function that takes two sequences
of operations, employing the requisite reductions in order to break down these sequences
into sub-sequences, then calling itself passing in these new sequences. When the length of
both sequences is one, it can then transform the operation in the first sequence relative to
the operation in the second sequence. The fact that our diagrams are finite tells us that
this process must eventually terminate. Furthermore it does not matter how we choose
to break up any given sequence although in practice we hive off the first operation from
any sequence of operations. An interesting and as yet unanswered question is whether
breaking the sequences roughly in the middle, say, is more efficient. Certainly the function
as it stands seems to be fast enough. Transformations involving sequences of hundreds of
operations are computed in virtually no time.

Given that the right hand sides of the reductions can be computed we are free to couch
them as identities, which will be utilised in the next section:

ρ\(τ1; τ2) = ρ\τ1\τ2 (3.2)

(τ1; τ2)\ρ = τ1\ρ; τ2\(ρ\τ1) (3.3)

(τ1; τ2)\(ρ1; ρ2) = τ1\ρ1\ρ2; τ2\(ρ1\τ1)\(ρ2\(τ1\ρ1)) (3.4)

Note that these are indeed identities, not equivalences. They say nothing about the effects on
any string s. Nonetheless given that for sequences of operations τ and ρ the transformations
τ\ρ and ρ\τ can be computed and given that the representation in figure 6 commutes, we
do have the following:

Theorem 3.4. Equivalence 3.1 holds.

In other words equivalence 2.1 can be extended to the cases when τ and ρ each represent
sequences of operations rather than just one, which is what we set out to prove.

4. The protocol

In this section we devise an algorithm that is able to keep any number of copies of a
document in line whilst changes are made to them concurrently. In order to do so it utilises
the method outlined in the previous section to transform one sequence of operations relative
to another, together with a simple protocol which sits on top of the HTTP protocol. Since
the HTTP protocol is based on the client-server model, so is our algorithm. Crucially, the
choice of a client-server model leads to the correct application of operational transformations
to both newly generated and pending operations. We explain what we mean by this later.
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d(n, |s| − n−m)

i(n, s′[n, |s′| −m])

s

s′
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Figure 10: Generating operations from a comparison of strings s and s′.

Just as in the previous sections, the treatment here is predominantly theoretical al-
though we draw parallels with the workings of the implementation where appropriate. One
instance where practical considerations had a bearing on the theory was the problem of la-
tency. Initially this was overlooked, and then when issues arose, they had to be addressed.
In the end the solution required no more than a refinement of the protocol.

We therefore break this section into two. In the first part, we adopt a woolly notion of
global time and present a protocol based on that, neglecting the problem of latency. This
allows us to get the salient points across. In the second part, we do away with global time
and adopt Lamport’s “happens before” relation [Lam78]. This provides the correct context
in which to explain the solution to the problem of latency, namely a refined protocol, and
to give a general proof.

Before getting going we briefly describe how stringwise operations are generated from
a comparison of two differing strings. Such a comparison results in at most one delete and
one insert operation. Figure 10 illustrates this. Here the shaded parts of strings s and s′ are
identical front and back. The middle parts, if there are any, contribute to a delete operation
in the case of s and an insert operation in the case of s′. It is easy to check the following:

s′ = (d(n, |s| − n−m); i(n, s′[n, |s′| −m]))(s)

Note that it makes no difference whether the difference between the strings is one character
or many, still at most two operations are generated. This is in marked contrast to charac-
terwise operations, where copying a whole block of text into the input field, for example,
might result in an overwhelming number of operations. The clear advantage of stringwise
operations should be self-evident here.

To begin the first part of this section proper we note that the client-server model consists
of any number of clients, we kick off with two for illustrative purposes, and a single server.
Here each client has a copy of the document, as does the server, which also has a store of
pending operations for each client. Communication is carried out by way of transactions,
with each transaction consisting of two parts: a request from the client, which garners a
response from the server. A request consists of a command and an optional sequence of
operations. A response consists of either copies of the document or sequences of operations.
The protocol consists of just three types of transaction, summarised as follows:

• INITIALISE: the server responds with a copy of its document,
• PUT: the client puts a sequence of operations on the server, the server confirms,
• GET: the client requests its pending operations, and the server duly responds.

Figure 11 illustrates the likely first few transactions of a session. Here the first client
is initialised with document s′ and then puts a sequence of operations τ ′ on the server,
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client 1 client 2server

s′

τ ′(s′) τ ′(s′)
PUT τ ′

INITILIASE τ ′(s′)

s′

τ ′(s′)

INITIALISE s′

τ ′(s′)

−

−

Figure 11: Two INITIALISE transactions with one PUT transaction in-between

possibly over the course of several transactions. The server applies these operations to its
own copy of the document and when a second client is initialised, it receives this amended
document τ ′(s′). In this simple case both clients end up with copies of the document that
are in line with the server’s copy.

Before going any further we describe these illustrations in detail and more importantly
the assumptions inherent in them. We assume that the server was initialised at some point,
before any of the clients. We also assume that transactions are completed, by which we
mean that requests always garner responses. This cannot be guaranteed, of course, however
fault tolerance can be built in for the occasions when transactions fail. See the end of the
related work and conclusions section for the details. Moving on, since information only ever
flows in one direction we do not show requests and responses as separate arrows, instead
showing each transaction as an arrow in the appropriate direction and labelled with the
requisite information. One assumption that we do not have to make is that transactions
are handled sequentially by both the clients and the server. This can in fact be guaranteed
in the implementation, and it means that the arrows in these illustrations never meet
and never cross. We therefore draw them horizontally, assuming that transactions happen
instantaneously and time unfolds incrementally. This is our woolly notion of global time.

Figure 12 illustrates the continuation of the session, with both clients having the doc-
ument τ ′(s′) = s. The first client now puts another sequence of operations τ on the server,
again possibly over the course of several transactions, and this time the server stores these
for the second client. Thus the first client’s operations τ become the second client’s pending
operations and the server’s document becomes τ(s). Then the second client puts its own
sequence of operations ρ on the server and here come the crucial steps:

the second client’s operations do not become the first client’s pending operations without
first being transformed relative to second client’s own pending operations

Thus the first client’s pending operations are ρ\τ and not just ρ.

the server does not apply the second client’s operations to its document without first trans-
forming them relative to the second client’s pending operations

So the server applies the operations ρ\τ to its document, which becomes (τ ; ρ\τ)(s).

the second client’s pending operations are also transformed relative to the operations it has
just generated

Therefore the second client’s pending operations τ become τ\ρ.
In this case both clients again end up with copies of the document that are in line

with the server’s copy, if we assume that (τ ; ρ\τ)(s) = (ρ; τ\ρ)(s), an assumption based on
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Figure 12: Two PUT transactions followed by two GET transactions

theorem 3.4. Next we clear up a technicality used in these arguments, namely that it makes
no difference whether a sequence of operations is put on the server by a particular client
over the course of several transactions or just one:

Lemma 4.1. Suppose the second client puts a sequence of operations ρ on the server
over the course of n transactions, thus ρ = ρ1; ρ2...; ρn. Then its pending operations, if τ
beforehand, become τ\ρ; the server’s document, if τ(s) beforehand, becomes (τ ; ρ\τ)(s);
and the first client’s pending operations, if the empty sequence beforehand, become ρ\τ .

Proof. By finite induction on the number of transactions. The base case is given by the
steps above. Now suppose that the first k − 1 transactions have taken place and set
ρ′ = ρ1; ρ2...ρk−1. By the induction hypothesis the second client’s pending operations
are τ\ρ′, the server’s document (τ ; ρ′\τ)(s) and the first client’s pending operations ρ′\τ .
Now suppose the client puts the next sequence of operations ρk on the server. Then, for
the second client’s pending operations we have, by identity 3.2:

(τ\ρ′)\ρk = τ\(ρ′; ρk)

For the server’s document, by identity 3.3:

(τ ; ρ′\τ ; ρk\(τ\ρ′))(s) = (τ ; (ρ′; ρk)\τ)(s)

And for the first client’s pending operations, again by identity 3.2:

ρ′\τ ; ρk\(τ\ρ′) = (ρ′; ρk)\τ
This completes the proof.

It should be clear that these arguments can be generalised but we leave off doing
so until we have a proper notion of time. Nonetheless it is worth pointing out that the
crux is here. Sequences of pending operations for each client must be held on the server
because the server cannot pass them on to each client immediately. The HTTP protocol
typically does not allow information to be pushed, only pulled, and so we simulated the
pushing of information by having each client poll the server, a common practice. And the
storage of pending operations on the server led in turn to them being transformed in the
aforementioned symmetric way.

We now come to the second part of this section and to an explanation of the solution
to the problem of latency together with a general proof. Because there is no direct user
interaction with the server and because it only handles one transaction at a time, the
assumptions we have made about it thus far remain valid and, in particular, the storage
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Figure 13: The first UPDATE transaction in the general case

and transformation of operations on the server does not need to change. On the other hand
the state of a client may change due to user interaction whilst a transaction is in progress
and this has not taken into account. We therefore do so now, bringing the treatment more
into line with the implementation as it stands. This implementation includes a refined
protocol consisting of just two types of transaction, summarised as follows:

• INITIALISE: the server responds with a copy of its document,
• UPDATE: the client puts a sequence of operations on the server, and the server

responds with the client’s pending operations, suitably transformed.

Next we introduce the fact that clients keep not one copy of the document but two.
The first is a working copy, the one formalised thus far, whilst the second is an editable
copy considered to be the value of the input field made available to the user. Also from
now on we work with an arbitrary, albeit fixed, number of clients, rather than just two. We
represent the client involved in a particular transaction at any time as the i’th client, whilst
any other client we represent as the j’th client.

Figure 13 illustrates the first UPDATE transaction of a session with this new protocol,
assuming that each client has already completed an INITIALISE transaction. We describe these
illustrations in detail again first. The far left column represents the i’th client’s working
copy of the document, the column next to this its editable copy. The server’s columns are
the same as before. We neglect to show the j’th client this time because it is not actively
involved in the i’th client’s transaction. Time unfolds top to bottom as before, but only does
so during the course of a transaction. The topmost and bottommost lines show information
across both the i’th client’s and server’s columns seemingly at the same time, but this only
represents the fact that both have a state before and after the transaction. It is not a return
to the woolly notion of global time.

Now suppose that a user makes a change to the i’th client’s editable copy of the docu-
ment. The i’th client duly updates its working copy and computes the requisite operations
τi, sending these to the server. Since this is the first UPDATE transaction, the j’th client has
no pending operations and so its pending operations become simply τi. The server then
updates its own copy of the document from s0 to τi(s0) and, since the i’th client also has
no pending operations, returns nothing. So far this is all much the same as before. The
difference now is that the user may have made further changes to the i’th client’s editable
copy of the document by the time the transaction is completed, therefore the editable copy
becomes τ ′i(τi(s0)). This means that there is no use in comparing the server’s copy of the
document with the i’th client’s editable copy in any proof, rather the comparison has to be
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Figure 14: The k’th UPDATE transaction in the general case with no pending operations

with its working copy. In this case it is easy to see that the two remain in line. Finally, we
rename τi to τ0 and set τ0(s0) to s1.

We next consider the k’th UPDATE transaction. There are two possibilities: either the
i’th client completed the previous transaction and therefore has no pending operations, or
it did not. Figure 14 illustrates the first possibility, with τi and τ ′i being re-used. Note
that there is an important difference between this transaction and the first, namely that we
cannot now assume that the i’th client’s working and editable copies start off in line. In
the case of the first UPDATE transaction this could be assumed, because the implementation
ensures that user interactions are discarded until the INITIALISE transaction has completed, at
which point the editable copy is set to be in line with the working copy. Now this is not the
case and the difference τi between the editable and working copies could have come about
either after completion of the previous transaction or whilst it was in progress. Either way
it does not matter, however we draw attention to the fact that the topmost line showing
the editable and working copies as being in line is missing, to make the point. Also note
that should this k’th UPDATE transaction be the second, we would equate the τi here with
the previous τ ′i .

To continue, this transaction unfolds in a similar way to the first. Because the j’th
client now has pending operations ρj , the i’th client’s operations τi are appended to these.
We then rename τi to τk and set τk(sk) to τk+1. Again the i’th client’s working copy and
the server’s copy of the document, both being sk+1, end up being in line if we assume that
both start as being so. This assumption forms the induction hypotheis in an inductive proof
based on the number of UPDATE transactions, of which the first transaction is the base case.
We present that proof once the theory is explained.

Now we come to the other possibility for the k’th UPDATE transaction, namely that the
i’th client did not initiate the previous transaction. Figure 15 illustrates this. Here the i’th
client has pending operations ρi and its working copy of the document sl, for l < k, will be
equal the server’s copy of the document after the l − 1’th UPDATE transaction, namely the
last transaction initiated by the i’th client itself. The following lemma will prove useful:

Lemma 4.2. ρi(sl) = sk

Proof. We just have to observe that ρi is τl; ...τk−1 and since τl(sl) = sl+1 all the way up to
τk−1(sk−1) = sk, the result follows.

As usual the operations τi the i’th client sends to the server are transformed relative
to it’s pending operations to become τi\ρi before the server applies them to its copy of the
document and appends them to the j’th client’s pending operations ρj . And again, as usual
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Figure 15: The k’th UPDATE transaction in the general case with pending operations

rather than return the i’th client’s pending operations directly, the server first transforms
them relative to the operations τi to become ρi\τi. The i’th client duly applies them to its
working copy of the document sl to give (ρi\τi)(τi(sl)). Now we rename not τi but τi\ρi
to τk and set τk(sk) to τk+1. In order to show that the i’th client’s working copy and the
server’s copy of the document remain in line we have the following lemma:

Lemma 4.3. (ρi\τi)(τi(sl)) = sk+1

Proof.

(ρi\τi)(τi(sl)) = (τi; ρi\τi)(sl)
= (ρi; τi\ρi)(sl)
= (τi\ρi)(ρi(sl))
= (τi\ρi)(sk)

= τk(sk)

= sk+1

Here we have made use of lemma 4.2 and the usual identities.

Lastly the i’th client must also apply its transformed pending operations ρi\τi to its
editable copy of the document. Further changes to this copy during the course of the
transaction however means that it has become τ ′i(τi(si)) and therefore the pending opera-
tions must be transformed again, this time relative to τ ′i , becoming (ρi\τi)\τ ′i , before being
applied. The editable copy therefore becomes ((ρi\τi)\τ ′i)(τ ′i(τi(sl))), as illustrated in fig-
ure 15. A proof along similar lines to that given in lemma 4.3 will equate this handful to
(τ ′i\(ρi\τi))(sk+1) but for the sake of the reader we omit this.

We end this section by summarising these results formally:

Theorem 4.1. Consider a fixed number of clients, each having completed an INITIALISE

transaction. Then after any subsequent UPDATE transaction, the working copy of the client
that completed the transaction and the server’s copy of the document are in line.

Proof. By induction on the number of UPDATE transactions. Figure 13 illustrates the base
case of the first UPDATE transaction. Figures 14 and 15 illustrate that if, after the k’th UPDATE

transaction, the working copy of client that completed the transaction and the server’s copy
of the document are in line then, after k+ 1’th UPDATE transaction, this is also true. So this
holds after any number of UPDATE transactions.
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Finally, we can drop the requirement that the number of clients be fixed:

Theorem 4.2. Consider an increasing number of clients. Then after any transaction, the
working copy of the client that completed the transaction and the server’s copy of the
document are in line.

Proof. Suppose a client completes an INITIALISE transaction. Then its working, and indeed
editable, copies are in line with the server’s copy of the document when the INITIALISE

transaction completes. Moreover since the pending operations of the other clients and the
server’s copy of the document remain unchanged, after any subsequent UPDATE transaction,
the working copy of the client that completed the transaction and the server’s copy of the
document are in line by theorem 4.1. Should other clients complete an INITIALISE transaction,
the same argument can be used.

Aside from the proof that our operational transformations preserve the intention of
each individual operation, found in subsection 5.3, the proofs in this section together with
those in sections 2 and 3 give the first ever formally correct concurrency control algorithm
for collaborative text editors.

5. Consistency

In this section we prove that our algorithm is correct against the standard consistency model,
although as we mentioned in the introduction, we hope that our algorithm’s correctness has
been shown to be self-evident without recourse to consistency models. Furthermore it is not
unreasonable to remark that the standard consistency model can be a little problematic in
places. We therefore modify it as we go along before drawing parallels.

Known as the CCI model, the standard consistency model requires the following three
properties of a concurrency control algorithm to hold:

• Convergence
• Causality, or precedence preservation
• Intention preservation

We tick these off one by one in what follows.

5.1. Convergence. To begin with we describe the concept of quiescence in the context
of concurrency control algorithms. It is a time when there are no operations left to be
executed by any client. A concurrency control algorithm is said to be convergent if it
ensures that all the client’s copies of the document are in line at quiescence, whenever this
occurs. Immediately this is problematic, since there is no such thing as global time in a
distributed system, as we know. We therefore redefine both quiescence and convergence,
rather than relying on something akin to our own previous woolly notion of global time.

We first define what we call local quiescence. Consider the response part of any trans-
action. We know that the client no longer has pending operations on the server the moment
the response is sent, and also that if it contains any pending operations they are immediately
executed on the client the moment it is received. Therefore we define local quiescence as a
combination of the moment on the server that the response is sent together with moment
it happens before, namely the moment on the client when it is received. This allows us to
define what we call local convergence as the property that the client’s working copy and



THE FIRST CORRECT CONCURRENCY CONTROL ALGORITHM 23

o

i’th client

p

(o−→p)i

o

o′

i’th clientj’th client

p

(o′−→p)i

Figure 16: The definition of o→ p.

the server’s copy of the document should be in line at local quiescence. So to say that our
algorithm is locally convergent is no more than a restatement of theorem 4.2.

In choosing to compare the working copies of client’s documents with the server’s copy
rather than their editable copies it may appear as if we are making a compromise. As
mentioned in section 4, however, it is impossible to do any better. Recall that the editable
copy is considered to be no more than the value of the input field itself, therefore nothing can
be said about it being in line with the server’s copy at any given moment beyond remarking
that if no user interactions take place during the course of a transaction, then the client’s
working and editable copies of the document will be in line when the transaction completes.
Algorithms that execute operations the moment they are generated, as ours does, are called
optimistic [CNDL95].

Is there a more general proof that is closer in spirit to the standard consistency model’s
definition of convergence? The only moments in time that we have to work with, so to
speak, are those moments on the server immediately a response is sent. If we take the
pending operations the server has stored for every other client at any such moment and
apply them to the working copies of these clients at the moments they completed their last
transaction, it turns out not unsurprisingly that resulting copies are all in line. However we
think that this is irrelevant, and do not give the proof. What we think is relevant is that
over a series of transactions the working copy of the client that completes any transaction
and the server’s copy of the document are always in line at the moment the transaction is
completed, and so we leave it at that.

5.2. Causality or precedence preservation. So far we have not mentioned causality,
or precedence as it is also known, because it played no part in the development of our
algorithm. Preserving causality is an issue for algorithms based on a peer-to-peer model,
where the lack of a centralised controlling process makes keeping track of the order of
operations extremely difficult as they are bandied about in all directions. By contrast
we could say that our algorithm preserves causality a priori, since it has never been an
issue. Nonetheless we give the standard definition of causality, which is based on Lamport’s
“happens before” relation, together with a proof that our algorithm preserves it.

To begin with we couch the generation and execution of operations on clients formally
in terms of events. Operations are written o and p, their transformed counterparts o′ and p′

respectively. We write oi to represent the event of operation o being generated on the i’th
client and p′j , say, to represent the event of the transformed operation p′ being executed by

the j’th client. We write oi→ pi if oi occurs before pi, o
′
i→ pi if o′i occurs before pi and so

on. Now we can give a definition of causality in terms of events:
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Figure 17: Operations are always communicated in sequential order.

Definition 5.1. The operation o causes, or precedes, the operation p, written o→ p, when
either oi→ pi or o′i→ pi.

We abbreviate oi→ pi as (o→ p)i and o′i→ pi as (o′→ p)i. Also o′i→ p′i can happen,
which we abbreviate (o′→ p′)i. So o→ p when either (o→ p)i or (o′→ p)i. For an illustration
that should make things clearer see figure 16. It should also be clear that if o→ p we
cannot have p→ o. This very valuable contribution, namely the realisation that Lamport’s
“happens before” relation on events leads to a relation on operations, is due to [EG89].

Now we come to the definition of the preservation of causality. An algorithm is said to
preserve causality if, whenever o→ p, o is executed before p on all clients. Formally:

Definition 5.2. An algorithm preserves causality when the following implications hold:

(o→ p)i ⇒ (o′→ p′)j
(o′→ p)i ⇒ (o′→ p′)j ∧ ∃k (o→ p′)k

Here we assume as usual that j 6= i, and also that i, j 6= k.

Now we formalise the notion of operations being put on the server. It is somewhat
arbitrary whether we write (o′→ p′)s or (o→ p)s here. We choose the former to emphasise
the fact that operations are transformed the moment they arrive.

Definition 5.3. If o is put on the server before p we write (o′→ p′)s.

We next formalise the assumptions made in section 4 relating to the sequential order of
operations on both client and server. Again for an illustration should make things clearer,
see figure 17.

Assumption 5.1. If (o→ p)i then (o′→ p′)s.

Assumption 5.2. If (o′→ p′)s then (o′→ p′)j .

Assumption 5.3. If (o→ p′)i then (o′→ p′)s and vice versa.

Assumption 5.4. If (o′→ p′)s then (o′→ p)j and vice versa.

The proof that our algorithm preserves causality is now straightforward.

Lemma 5.1. Our algorithm preserves causality.

Proof. We make use of figure 17. If (o→ p)i we join parts (a) and (b) to get (o′→ p′)j . If
(o′→ p)i then by part (d) we must have (o′→ p′)s. Then by part (b) we have (o′→ p′)j
except for one client, since o must be generated somewhere. Then by part (c) we have
(o→ p′)j for one value of j, say k, that is ∃k (o→ p′)k and we are done.
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Figure 18: Subtleties when transforming operations relative to deletes.

5.3. Intention preservation. This property relates not to the workings of concurrency
control algorithms as a whole but only to operational transformations. It turns out that pre-
cisely what it means for the intention of an operation to be preserved under transformation
is not quite straightforward to formalise. However we jump through the hoops and prove
that our stringwise operational transformations preserve intention in a way that hopefully
appeals to common sense.

Roughly speaking, the intention of an insert is preserved if, once transformed, it still
inserts the same characters in the same place. There is one caveat, illustrated in figure 18 (a),
namely that the characters cannot necessarily be inserted in the same place if the left hand
corner of the insert overlaps the transforming delete. In this case the transformed insert
does the best that it can, so to speak, inserting its characters immediately to the right of
the deleted characters. Nonetheless it is reasonable to state that the intention of the insert
is preserved. If we consider the string after both operations have been executed, we find
that the inserted characters are where we would expect them to be.

In a similar vein, roughly speaking the intention of a delete is preserved if, once trans-
formed, it still deletes the same characters. Again there is a caveat, illustrated in fig-
ure 18 (b), namely that the characters cannot all be deleted if the transforming delete has
already deleted some or all of them. This is easily accounted for by simply insisting that
the transformed operation deletes only those characters that remain. Nonetheless again it
is reasonable to state that the intention of the first delete is preserved, even though the
second delete did part of the job for it, so to speak. If we consider the string after both
operations have been executed, we find that the only requisite characters have been deleted.

We claim that our stringwise operational transformations always preserve the intention
of operations. We have just given two of the subtler cases and, admittedly, there are others.
Recall from section 2, for example, the transformation of a delete by an insert which results
in the delete being split in two. It is easy to check that the intention of the delete is preserved
in this case, however. It does, after all, delete the same characters after the transformation
as it would have done before. This is illustrated in figure 1.

We could leave it at that, however a proof is needed. So we begin with the formalising
the intent of operations and hope that it clarifies rather than occludes:
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Definition 5.4. The intention of an insert is an ordered pair consisting of the index of
the character immediately to the left of which the insert operation’s characters are to be
inserted or zero if there are no characters, together with a string of the insert operation’s
characters themselves. The intention of a delete is a set of the indexes of the characters it
deletes:

[[i(n, s)]] = (n, s)

[[d(n, l)]] = {n, ...n+ l − 1}
Now we employ a little sleight of hand in order to ease the formalism that follows.

Looking at figure 18 (a), we see that the character with index 5 keeps this index after the
execution of the first operation, and again, after the second operation. The characters in
figure 18 (b) also keep their original indexes in this way. In fact this has always been the
case in these illustrations, see figures 1, 2 and 3 in section 2, for example.

When the transforming operation is an insert this renumbering makes the preservation
of intention easy to formalise. For the transformation of an insert i(n, s) relative to another
insert i(n′, s′), it should be clear that if we allow characters to keep their original indexes
we have:

[[i(n, s)\i(n′, s′)]] = (n, s)

Similarly for the transformation of a delete (n, l) relative to an insert i(n′, s′), again it should
be clear that if we allow characters to keep their original indexes we have:

[[d(n, l)\i(n′, s′)]] = {n, ...n+ l − 1}
And so in all cases when τ is an arbitrary operation and ρ is an insert we have:

[[τ\ρ]] = [[τ ]] (5.1)

When the transforming operation is a delete we know that the cases can be more subtle.
For the transformation of an insert i(n, s) relative to a delete d(n′, l′) we have:

[[i(n, s)\d(n′, l′)]] =

{
(n′ + l′, s) n′ 6 n < n′ + l′

(n, s) otherwise

In other words, if the left hand corner of the insert overlaps the delete, the insert is effectively
moved immediately to the delete operation’s right. See the illustration on left hand side of
figure 1 again. With a little care we can re-use the formalism of section 2:

[[τ\ρ]] =

{
[[τ ↑ ρ+]] τ ' ρ ∨ τ > ρ

[[τ ]] otherwise
(5.2)

For the transformation of a delete d(n, l) relative to another delete d(n′, l′) we can do
better. If the deletes do not overlap, the transformed delete will delete the same characters,
otherwise it will only delete the characters left by the transforming delete. Formally:

[[d(n, l)\d(n′, l′)]] = {n, ..n+ l − 1}\{n′, ..n′ + l′ − 1}
So in the case of both τ and ρ being deletes we have:

[[τ\ρ]] = [[τ ]]\[[ρ]] (5.3)

And so we have a proof of sorts.

Lemma 5.2. Our stringwise operational transformations preserve intention.

Proof. It is straightforward to check that in all cases that equalities 5.1, 5.2 and 5.3 hold.
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Figure 19: Transformation properties TP1 and TP2

6. Related work and conclusions

To the best of our knowledge ours is the first formally correct concurrency control algo-
rithm for collaborative text editors and it is reasonable to ask why, given the considerable
amount of literature surrounding this problem. See [otf] for a partial synopsis, for exam-
ple, and [LL10] for the following negative view: “proofs are very complicated and error-
prone...we can only conclude that an algorithm achieves convergence but cannot draw any
conclusion about intention preservation.”

Our work contradicts this view. For example we appear to be the first in proving that
our operational transformations preserve intention, with more than one recent work [LL05,
WUM08] agreeing with our own findings that this has never been done before. In doing
so, however, we run the risk of occluding with formalism what is intuitively pretty obvious.
When proving convergence on the other hand the formalism feels a lot less strained, in fact
we think that the theorems in sections 2, 3 and 4 are genuinely useful in demonstrating
that our algorithm works perfectly in practice. We also hope that the crux of the argument,
illustrated in figure 12, is perfectly clear. The rest, as they say, then follows.

It is perhaps a little surprising then that stringwise operational transformations such
as ours have never been adopted. In our opinion the reason is that they lead to a conver-
gence problem requiring a novel proof as opposed to a simple inductive one. As mentioned
earlier in section 2, less than ideal stringwise operational transformations have been used
in the past in order to admit inductive convergence proofs, but as a consequence they do
not preserve intention [Cor95]. Stringwise operational transformations have occasionally
cropped up elsewhere [SYZC96] but the details are vague. Another work [SJZ+98] does
indeed acknowledge the effects of what we call fragmentation, but there are no proofs and
apparently the implementation led to “complications”. Lastly a more recent work [SLG09]
uses stringwise operations but splitting deletes is avoided, apparently in order to “simplify
presentation and stay focused on the main contribution”.

On the other hand, in spite of their limitations in our view, characterwise operational
transformations have always been used. Despite the fact that they mitigate against frag-
mentation, in our opinion making any consistency proof considerably easier, nonetheless a
convincing proof against the standard consistency model for an algorithm that uses them
seems never to have emerged. Any such proof must start with the result that the opera-
tional transformations themselves are correct, and such proofs are lacking from the earliest
attempts [EG89, RNRG96, SJZ+98, SCF98], indeed the operational transformations used
in these attempts have all been found to be incorrect in [IOR03].
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Figure 20: Imposing a total ordering on concurrent operations

This work also contains what appears to be the first set of characterwise operational
transformations that have been proved correct using an automatic theorem prover [spi].
By way of comparison we attenuate our own stringwise operational transformations to
characterwise ones:

i(n, c)\i(m, d) =



i(n, c) n < m

i(n, c) n = m ∧ c < d

i(n, c) n = m ∧ c = d

i(n+ 1, c) n = m ∧ c > d

i(n+ 1, c) n > m

i(n, )\d(m) =

{
i(n, ) n 6 m

i(n− 1, ) n > m

d(n)\i(m, ) =

{
d(n) n < m

d(n+ 1) n > m
d(n)\d(m) =


d(n) n < m

e() n = m

d(n− 1) n > m

Aside from two small differences these agree with those given in [IOR03]. The first of
these is that their algorithm tries to differentiate between inserts with the same position by
keeping track of their original position before resorting to a lexicographical ordering on the
characters. This is perhaps a little over-engineered. The second is that when both inserts
are identical, their algorithm transforms one of the two inserts into the empty operation.
We think this is a move towards transformations being in some way bound to the meaning
of the underlying content, and cannot agree with it. However these are small gripes.

Moving on, with the problem of finding a correct set of characterwise operational trans-
formations apparently solved, why then did a convergence proof still remain elusive? In
our opinion one of the main reasons is a predilection for the peer-to-peer model that has
continued from the early days [EG89, Cor95] into recent times [LL07, WUM10] whereas
implementations based on the client-server model have always been rare [CNDL95]. The
peer-to-peer model brings with it the disadvantage of the lack of a centralised controlling
process and, as a consequence, the problem of imposing a total ordering on the opera-
tions for the purposes of transformation [VCFS00, LL07], or making do without one. With
operations executed concurrently any imposed total ordering is bound to be somewhat ar-
bitrary, however without one the problem becomes harder. In these cases the operational
transformations have to satisfy not only our own equivalence 2.1, which has always been
known as transformation property TP1 [RNRG96], but also the mysterious transformation
property TP2 [RNRG96]. We reproduce the commonplace illustrations of these properties
in figure 19, including the first because of its resemblance to our own decreasing diagrams.



THE FIRST CORRECT CONCURRENCY CONTROL ALGORITHM 29

client 1 client 2 client 3

a1bc ac

a21c

ab2c

a2c

a12c

O1 = i(1, ‘1’) O2 = d(1) O3 = i(2, ‘2’)

O2\O3 = d(1)

O1\O3\(O2\O3)
= i(1, ‘1’)\d(1)
= i(1, ‘1’)

O1\O2 = i(1, ‘1’)

O3\O2\(O1\O2)
= i(1, ‘2’)\i(1, ‘1’)
= i(1, ‘2’)

a1c

Figure 21: The amended false-tie puzzle

We give an explanation of this mysterious TP2. Whilst TP1 relates to the effect of
operations on the underlying document, TP2 requires that operational transformations
must ensure that the combined effect of two operations, not on the underlying document
but on a third concurrent operation, must be the same regardless of their order, given of
course that the second is transformed relative to the first:

τ3\(τ1; τ2\τ1) = τ3\(τ2; τ1\τ2)
Incidentally, whether our own operational transformations satisfy this property is moot.
Because our algorithm is based on a client-server model rather than a peer-to-peer one, it is
able to impose a total ordering on operations for the purposes of transformation by virtue
of the fact that transactions are handled sequentially. We show a simple case of how this
total ordering is imposed in figure 20, where τ1 < τ2 < τ3 on the server. Here pending
operations are shown inside the dotted circles whilst operations already executed on the
clients are shown outside. Note that the ordering τ1 < τ2 does not mean that τ2 is never
executed before τ1 on some clients, transformed or otherwise. At client 2, for example, τ2
will be executed before τ1\τ2. What it does mean, however, is that on the server τ2 never
occurs before τ1, transformed or otherwise, and since transformations always happen on
the server, when any other operation is transformed relative to these two operations, it is
always transformed relative to τ1 before τ2, again transformed or otherwise. Thus we see
τ3\(τ1; τ2\τ1), but would never see τ3\(τ2; τ1\τ2).

The false tie puzzle. We called the transformation property TP2 mysterious and we give
the reasons why. We look at what is called the false tie puzzle [SZJY97], which could be said
to test the correctness of operational transformations when a total ordering on operations
for the purposes of transformation has not been imposed. We reproduce the commonplace
illustration of this puzzle in figure 21, missing out some of the operations executed at the
first client because they are not in fact needed for the complete puzzle.

The “puzzle” is that the algorithm diverges because of what is known as a false tie, a
seemingly incorrect operational transformation that results from two inserts occupying the
same position:

i(1, ‘2’)/i(1, ‘1’) = i(1, ‘2’)
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Note that this operational transformation is different from our own, as it leaves the lexico-
graphically greater of the two inserts in place rather than the lexicographically lesser when
the two inserts are tied. In fact our operational transformation would not break the puzzle
but this is not the point. The operational transformation above is just as valid, with the
choice of whether to leave the lexicographically lesser or greater insert in place when two
inserts are tied being an arbitrary one. The point is that this puzzle cannot differentiate
between correct and incorrect sets of operational transformations. What is wrong is not the
operational transformations themselves but the algorithm implicit in the puzzle itself.

It is perhaps not surprising that one solution to this puzzle is to require that the
operational transformations satisfy TP2. Comparing the sequences of operations executed
by the second and third clients, rewriting on occasion and employing TP1 where necessary
we get:

O2;O1\O2;O3\O2\(O1\O2) ≡ O3;O2\O3;O1\O3\(O2\O3)

... ≡ O2;O3\O2;O1\O3\(O2\O3)

O1\O2;O3\O2\(O1\O2) ≡ O3\O2;O1\O3\(O2\O3)

O1\O2; (O3\O2)\(O1\O2) ≡ ...
O3\O2; (O1\O2)\(O3\O2) ≡ O3\O2;O1\O3\(O2\O3)

(O1\O2)\(O3\O2) ≡ O1\O3\(O2\O3)

O1\O2\(O3\O2) ≡ ...
O1\(O2;O3\O2) ≡ O1\(O3;O2\O3)

This begs the question, are there any operational transformations that satisfy TP2? Cer-
tainly none of those studied in [IROM06], only the characterwise ones outlined in [IOR03],
the ones closely in agreement with our own attenuated stringwise operational transforma-
tions. We also agree with [IROM06] that it is a difficult if not impossible task to verify
whether a set of operational transformations satisfies TP2 without the help of an automated
theorem prover. There are simply too many cases to consider. We wonder at this point
whether our own stringwise operational transformations do so but then, as we have pointed
out, the matter is moot.

Group undo. Another mystery is the apparent problem of undoing operations in a collab-
orative environment, so-called group undo. Like other issues this has continued from the
early days into recent times [PK94, RNRG96, Sun02, WUM08, SS09]. [Sun02] says that it
is “technically challenging and none of the existing group undo solutions is able to offer
such a capability”, [WUM08] says that “consistency of shared data with the undo feature
is a complex issue”, and so on.

In all honesty this never occurred to the author. Whether an operation comes about
as a result of user interaction or whether programmatically is entirely irrelevant to its
inclusion in the client’s undo buffer on modern systems. Furthermore when the user presses
ctrl-z, say, the last operation in the undo buffer is undone, effectively resulting in a new
operation being generated which is indistinguishable from one generated by user interaction
or programmatically. The point is the system’s undo buffer has nothing to do with our
algorithm, and operations generated by way of undos have no special place in it. It simply
makes no difference how an operation is generated and there is certainly no need to associate
an operation that comes about as a result of an undo with the operation that it undoes.
We leave it there.
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Figure 22: The i’th client re-initialises to become the i′’th client

We end on a positive note. Our algorithm is perfectly fault tolerant, by which we mean
that the failure of any particular UPDATE transaction to complete does not adversely affect
a session. Figure 22 illustrates this. Here the k’th UPDATE transaction fails, and so after
a timeout the i’th client starts another INTIALISE transaction, effectively becoming a new
i′’th client with editable copy of the document remaining intact. The moment the INTIALISE

transaction completes new operations are generated by comparing the working and editable
copies, thus τi′(sk′) = si′ where sk′ is the new working copy returned by the server and
si′ is the editable copy, uninterrupted so to speak. Immediately after this a new UPDATE

transaction can be started. Note that in figure 22 it is the request that fails but it makes
no difference to the argument if it is the response that fails. In this case the server’s state
would be updated but otherwise the situation remains the same. Note also that this whole
process can be undertaken unbeknownst to the user.
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[OUI05] Gérald Oster, Pascal Urso, and Pascal Moland Abdessamad Imine. Real-time Group Editors

without Operational Transformation. Technical report, INRIA, 2005.
[PK94] Atul Prakash and Michael Knister. A Framework for Undoing Actions in Collaborative Systems.

ACM Transactions on Computer-Human Interaction, 1(4):295–330, 1994.
[RNRG96] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. An Integrating,
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