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Meaning versus representation (1)

“...suppose there in fact existed a wonderful correspondence
between our concepts and the world...whereby it was in fact
metaphysically impossible for certain claims constitutive of those
concepts not to be true. This is, of course, not implausible in the
case of logic and arithmetic...”

Stanford Encyclopedia of Philosophy



Meaning versus representation (Il)

What is a concept?
If I asked you if you have read The Last Battle by C.S.Lewis...

...clearly | am not referring to my own hard copy (brandishes book).



Meaning versus representation (I11)

The Last Battle by C.S.Lewis is a concept.

Concepts are ubiquitous. How many are there in just these first few
slides? The concept of a book, the concepts of reading and writing,
the concept of time, the concept of a concept itself.

The concepts that we communicate amongst ourselves and can
largely agree upon | call general concepts.



Meaning versus representation (IV)

How do we frame and communicate general concepts?

In natural languages we employ words and punctuation composed
into terms, phrases or expressions. So there is a dichotomy:

gives meaning to

T

Corresponding term,
phrase or expression

‘\_/

is representative of

General concept



Meaning versus representation (V)

In the field of symbolic reasoning, which encompasses logic and
mathematics, we mostly use symbols in preference to words.

gives meaning to

General concept of pi T

\/

is representative of

Notice that the general concept of pi is not on the left at alll It is
just one of the natural language phrases we use to represent it.



Meaning versus representation (V1)

So good is natural language at communicating general concepts
that we scarcely notice the difference between them and their
representations at all.

What if | switched languages to French, however, or used an emoji
than the corresponding natural language phrase? Only then does
the difference become apparent.

So is this our wonderful correspondence? Unfortunately not.

The correspondence that Stanford speaks of is not between general
concepts on the one hand and their representations on the other.

It is between general concepts and reality (whatever that is).



Meaning versus representation (VII)

Can we get a handle on reality? This is debatable, which is why the
quote from Stanford is couched as a supposition.

The point is that certain things might be considered to be universal
in the sense that they exist regardless of our conception of them.
And in mathematics and logic, this is considered more likely.

The concept of pi might be considered universal, for example, or
the concept of a natural number.

But, as | have said, this is debatable.



Meaning versus representation (VIII)

Thus in symbolic reasoning we should attempt a less lofty goal.

We should invent symbols, or occasionally resort to words, to
represent only our general concepts, and not claim that these
symbols or words are representative of universal concepts.

We should leave attempts at universal reasoning to philosophers!

Which is not to belittle their efforts, by the way. To arrive at this
conclusion was surely a philosophical exercise.



Meaning versus representation (IX)

Maybe you think all of this philosophising is pretty aimless...

The lack of an understanding of the dichotomy between meaning
and representation led to problems that continue to this day,
however, not least in mathematics and logic.

Mathematicians routinely introduce symbols to represent general
concepts without realising that they are doing so.

They tend not to be satisfied with these general concepts, however,
and habitually equate them with other general concepts in a
dubious attempt to legitimise them.

The classic example is the identification of the natural number zero
with the empty set.



Meaning versus representation (X)

Perhaps if mathematicians could be persuaded to explicitly declare
the symbols that they subsequently employed, they might realise
that there is no need to do anything more.

Pi is just pi. There is no justification in equating it an equivalence
class of Cauchy sequences of rational numbers, that itself boils
down to nothing but a hugely complex set.

“Everything is a set...even though it would take a considerable
amount of work to write a complete formula...in set theory that
expresses the notion x is a scheme, it is possible to do so. The
same thing should be true for any mathematical object.”

The Stacks Project

| will come back to the “Everything is a Set” view later on.



Peano's axioms (1)

What are Peano’s axioms? We deliberately use non-mathematical
language to begin with. We will need the following concepts...

> the concept of a objects,
» the concept of a successor,

> the concept of equality.

The second through to the fifth axioms just define equality in the
standard way and are of no further interest.



Peano's axioms (1)

Here is the essence of the remaining axioms:

» 6. Every natural number has a successor.

» 7. Any two natural numbers that have the same successor
must in fact be the same, and vice versa.

» 148 There is a unique natural number which is not the
successor of any other natural number.

The ninth axiom is something special and is the main subject of
these slides. It is left off for now but we will come to it shortly.



Peano's axioms (I11)

Below is a representation of the natural numbers. One domino is
considered to be the successor of another if it stands directly
behind it.

These dominoes obey the first eight of Peano's axioms. It is a
worthwhile exercise to verify this. Just check axioms 6, 7 and 1+38.



Peano’s axioms (1V)

Notice that we have this henge of dominoes. Unfortunately their
inclusion does not break the first eight of Peano's axioms. You
could double check this. Bah!

This is where the ninth axiom comes in. It effectively rules out the
henge of dominoes...



The Principle of Induction (1)

Before introducing the ninth axiom, we introduce two more
concepts in order to make the language a little more intuitive:

» The concept of counting. To count is to go from one object to
its successor and so on.

» Recall that we have a unique object which is not the successor
of any other. We call this the first object.

Now for the ninth axiom, the Principle of Induction:

All of the natural numbers can be reached by starting at the first
natural number and counting.




The Principle of Induction (I1)

It should be easy to see now that why Principle of Induction rules
out the henge of dominoes...

» Because the first domino is not in the henge;

» and because no domino in the henge is the successor of any
domino outside of it;

» we can never reach any domino in the henge by starting at the
first domino and counting.

So if our dominoes are to obey the Principle of Induction, and
therefore be considered a representation of the natural numbers,
they cannot include a henge of dominoes.



The Principle of Induction (Il1)

Sceptical? Perhaps you are used to seeing the Principle of
Induction written in this form:

Vk (P(k) = P(k + 1))

We use the notation k + 1 for the successor of k here. We also
note the presence of universal quantification, but pay no more
attention to it for the time being.

We really can translate this back into the language dominoes and
henges...



The Principle of Induction (1V)

In order to see this, we visualise a statement P(n) holding by way of
the corresponding domino being lightly coloured. So regardless of
what P(n) actually is, we imagine it corresponds to the statement:

“the n'th domino is lightly coloured”

Now the Principle of Induction reads:

If the first domino is lightly coloured; and if any domino being
lightly coloured implies that its successor is lightly coloured; then
these two statements taken together imply that all dominoes are

lightly coloured.




The Principle of Induction (V)

Again we can prove that the Principle of Induction rules out the
henge of dominoes...

> |t is certainly true that the first domino is lightly coloured;

» and it is also true that any domino being lightly coloured
implies that its successor is lightly coloured,;

» but we cannot claim that these two statements taken together
imply that all dominoes are lightly coloured unless we rule out
the henge of darker dominoes.

| cannot stress enough that the essence of the Principle of
Induction lies in dominoes and henges! It is simply there to rule out
the henges!



The set-theoretic representation of the natural numbers (I)

Are there representations of the natural numbers that are a bit
more mathematical? The commonly accepted set-theoretic
representation can be defined somewhat informally:

> 0=
> 1=0U{0} = {0}
> 2=1U{1} = {0} U{1} = {0,1} ...

Here n+ 1 is defined as nU {n}. Note that we also have...
n+1={0,1...,n}

It is possible to check that this representation obeys the first eight
of Peano’s axioms. Again just check axioms 6, 7 and 1+8.



The set-theoretic representation of the natural numbers (II)

What about the Principle of Induction? In set-theoretic form it is:

P(0)
= VYneN P(n)
VkeN (P(k) = P(k + 1))

Russell's paradox teaches us that we cannot quantify universally
without selecting from an existing set, hence the need for this set
called N. But how do we define it?

Suppose we have a set | which contains all the sets that represent
natural numbers. It may contain other sets, too, but we pretend
that doesn't matter. And suppose we could define a property N(n)
that identifies just the sets that represent natural numbers. Then
the following definition would suffice:

N={nel|N(n)}



The set-theoretic representation of the natural numbers (II1)

What is this mystery set / from which we can select all those sets
that represent the natural numbers? It is called an inductive set
and it has the following properties:

> el
> Ifnelthenn+1€el

It turns out that there is no way to form an inductive set without
the axiom of infinity, which simply asserts that one exists.

Moreover, in practice a formal definition of N(n) is overlooked and
the following is preferred:

N={ne l|ne/l forevery inductive set I'}

From this we can prove that N is the smallest inductive set.



The set-theoretic representation of the natural numbers (1V)

Here is the Principle of Induction again. This time we prove it,
relying on the fact that N is the smallest inductive set...

P(0)
= VneN P(n)
VkeN (P(k) = P(k + 1))

We define the set A to be {n € N|P(n)}. Clearly we have A C N.
But A is also inductive by definition and since N is the smallest
inductive set we have N C A. So A =N and we're done.

Now we have a set N of sets that obey all of Peano’s axioms and
we really can say, therefore, that they are a representation of the
natural numbers.



The set-theoretic representation of the natural numbers (V)

Aside from the fact that the “smallest inductive set” approach
seems suspect, there are other issues with the set-theoretic
representation of the natural numbers...

One is that we get additional behaviour that we don't want. For
example, the intersection 1 N 2 makes sense, but should it?

The other is that these sets are often identified with the natural
numbers rather than being considered just a representation of
them. Recall the following identity given earlier:

0=10

Many, including me, would argue that it simply does not make
sense to equate these two concepts.



A modern approach

It is easy to criticise the identification of the natural numbers as
sets, and, by extension, the “everything is a set” view. But it would
be churlish not to acknowledge that it was an enormous advance at
the time. | am told it brought about the unification of mathematics,
which up until that time had been a bit of a disparate mess.

A better and more conciliatory approach is to try to figure out what
concepts the proponents of this view missed at the time and then
to ask, if they had these to hand, what might they have come up
with instead? These concepts spring to mind:

> Types

» Terms and constructors

> Variables and quantification

» Intuitionistic proofs and contexts



Types

We return to the aforementioned equation identifying the natural
number zero and the empty set:

0=10

Why exactly does it not make sense? The reason is that zero is a
natural number and the empty set is, well, a set. And you cannot
equate two concepts that are fundamentally different.

So we come to the concept of a type. All natural numbers have the
same type, which is different to the type of all sets. And from the
concept of a type comes the principle that we cannot equate two
objects if they have different types. Therefore the above equation is
disallowed, we say that it is not well typed.

As Larry Paulson once wrote, types stop us writing nonsense.



Terms and constructors (I)

Like their allies, variables, terms are so ubiquitous that it is far from
immediately obvious that they are constitute a concept in their own
right. Let us go over the philosophical ground again...

Consider zero. Peano showed that it can be defined in a general
but nonetheless precise way, however we have struggled to find a
convincing way of representing it.

But why not just take the word 'zero’? It is totally unambiguous,
nor is it a domino or a set. This is what we call a term.

If we represent a general concept by a term, we say that its
meaning is the general concept.



Terms and constructors (I1)

Terms are defined using constructors and always have a type:

Type NaturalNumber
Constructor zero:NaturalNumber

Here we have defined a type followed by a nullary constructor of
that type. Nullary constructors take no arguments, so when you
define a nullary constructor, you are effectively defining a term.

Now we have a term for zero with the right type:

zero \\ 0

zero:NaturalNumber \\ holds



Terms and constructors (lII)

Constructors also allow us to form composite terms. The unary
constructor below takes one argument, namely any other term of
type NaturalNumber, and results in another term of that type:

Constructor successor (NaturalNumber) :NaturalNumber

Now we can construct the terms representing the next few natural
numbers:

successor (zero) // 1
successor (successor(zero)) // 2
successor (successor (successor(zero))) // 3

Bear in mind that constructors are not functions, they are a purely
syntactic device.



Variables and quantification (1)

Variables are another concept that mathematicians use all the time
but rarely define explicitly. Consider the following:

Type RealNumber
Variable x:RealNumber
Constructor f(RealNumber):RealNumber

These definitions mean that the term f£(x) make sense, we say that
it is well formed. In fact variables are considered to be terms in
their own right, which is why we can pass them as arguments to
constructors in order to form other terms.

Again bear in mind that the term £(x) has nothing to do with any
function. The example here was chosen to make you think. If we
wanted it to represent the value obtained from the application of
some function £ to the variable x, we would have to define this
meaning explicitly.



Variables and quantification (I1)

To continue, unless we assign a value to a variable, it is considered
to be undefined. If a statement containing a variable holds when
that variable is undefined, it seems reasonable to say that it holds
for all values of that variable. So the following two statements...

x is undefined
X=X

...are equivalent to:
Vx x=x

The concept of variables being undefined, therefore, is effectively
synonymous with universal quantification. Indeed, as long as doing
so does not lead to ambiguity, it is often permissible to leave out
universal quantification altogether.



Intuitionistic proofs and contexts (I)

You may have noticed that there has never been any mention of a
statement being true or false, only of a statement holding. In fact
the concepts of truth and falsity have not been used at all. This is
quite deliberate.

From an Aristotelian point of view, statements can be evaluated or
interpreted as being true or false. From an intuitionistic point of
view, however, a statement holds either if it has been stated by way
of an axiom, or it has been proven. We can say in either case that
it is true for the sake of emphasis, but this is only a turn of phrase.

You could say that any theorem is a syntactic consequence of
certain axioms or theorems, in order to emphasise that there is no
underlying model or interpretation at work.



Intuitionistic proofs and contexts (II)

Suppose we have a theorem called TwolsEven. This relies on other
axioms and theorems, which we make use of by inserting their
statements together with references to their labels:

Theorem (TwoIsEven)
2:Even
Proof
1:0dd from OnelIsOdd
s(1) :Even from Successors0fOddsAreEven
Conclusion
2:Even from TheSuccessor0fOnelIsTwo

The details of the proof of the Successors0f0ddsAreEven theorem are
irrelevant here. We simply employ the statement and justify it by
referencing the theorem's label with the from keyword.



Intuitionistic proofs and contexts (lII)

It is helpful, although strictly speaking not quite right, to think of a
context as a mapping from labels to statements:

OnelIsOdd :: 1:0d4d,
TheSuccessor0fOnelsTwo :: s(1)=2,
Successors0f0ddsAreEven ::

Since this context permits us prove that two is indeed an even
number, we write:

OneIs0dd :: 1:0dd, TheSuccessor... - TwolIsEven :: 2:Even

In general, if 7 is some context which permits us to prove some
statement P and we label the theorem p, then we write:

TEp: P

Perhaps using the symbol 7 was a bad choice...



A type theoretic representation of the natural numbers

With types, terms and so on to hand, we can now formulate what
we call a construction of the natural numbers. However, unlike the
set-theoretic representation, there is nothing contrived about it:

Type NaturalNumber
Constructor zero:NaturalNumber
Constructor successor (NaturalNumber) :NaturalNumber

It should be straightforward to check that this construction obeys
Peano’s axioms. Just check axioms 6,7 and 148 as usual.



The Principle of Induction in type-theoretic form (1)

What about the Principle of Induction? The first thing to do is to
state it in the language of types, terms, contexts and so on.

pFR:P(z) o(k)F S(k):: P(k)= P(s(k))

Hopefully it does not look too daunting!

We can actually derive this from the construction of the natural
numbers just given. In order to do so, we need to find out what
7(n) and T(n) are. How can we achieve this?



The Principle of Induction in type-theoretic form (I1)

Returning to the representation using dominoes, the first thing to
realise is that we have constructed only the lighter coloured ones.
To make this clear, we explicitly construct the darker ones, too:

Type N
Constructors z:N, s(N):N, w:N

Axiom s(s(s(s(s(s(s(s(s(sWNNNNN)=w

Here the darker dominoes start with w and the axiom equating the
tenth successor with w gives us a henge with ten dominoes. The
original henge was bigger but you get the idea.

The point is, however, that have have not created this additional
henge of darker dominoes in our original construction! We have
only constructed the lighter coloured ones!



All natural numbers are either even or odd (I)

In order to demonstrate how to derive the Principle of Induction,
we utilise a concrete example, namely proving that all natural
numbers are either even or odd.

We begin with some definitions:

Type EvenOr0Odd
Types Even,0dd:EvenOr0dd

Axiom (EvensAreDivisibleByTwo)
n:Even iff 2|n

Axiom (Successors0fOddsAreEven)
n:0dd iff s(n):Even

Axiom (EvenOrOddsAreEitherEvensOr0dds)
n:Even0Or0dd iff n:Even V n:0dd



All natural numbers are either even or odd (II)

Next, a simple theorem for the base case:

Theorem (ZeroIsEvenOr0dd)
z:EvenOr0dd
Proof
2|z
z:Even from EvensAreDivisibleByTwo
z:Even V z:0dd by RightDisjunctionIntroduction
Conclusion
z:Even0Or0dd from EvenOrOddsAreEitherEvenOr0dd

Note that we have referenced two of the previous axioms, as
expected. We have also referenced the inference rule for right
disjunction introduction here by way of the by keyword.



All natural numbers are either even or odd (l1)

Now the theorem for the induction step, somewhat incomplete:

Theorem (Successors0fEvenOrOddsAreEvenOr0dd(k))
k:Even0Or0dd => s(k) :EvenOr0dd
Proof
Suppose
k:EvenOr0dd
Then
k:Even V k:0dd from EvenOrOddsAreEitherEvenOr0dd
Suppose
k:Even
Hence
s(k):0dd from Successors0fEvensAre0dd
k:Even => s(k):0dd by ConditionalProof
Hence
s (k) :EvenOr0dd by ProofByCases
Conclusion
k:Even0r0dd => s(k):EvenOr0dd



All natural numbers are either even or odd (1V)

To summarise so far, we have the base case and the induction step:
pER:P(2)
o(k)F S(k) :: P(k) = P(s(k))

Recall that we need to find out what 7(n) and T(n) are. We start
with a template theorem and an empty proof for 7(z) and T(z):

Theorem (NaturalNumbersAreEvenOr0dd(z))
z:EvenOr0dd
Proof

Conclusion
z:EvenOr0dd

So what is the context, and what is the proof?



All natural numbers are either even or odd (V)

We obviously need to make use of the base case. We know that the
theorem ZeroIsEvenOr0dd proves the statement z:Even0Or0dd, so the
context must be:

ZerolsEvenOr0dd :: z:EvenOr0dd

So there is effectively no need for a proof:

Theorem (NaturalNumbersAreEvenOr0dd(z))
z:EvenOr0dd

Conclusion
z:Even0r0dd from ZeroIsEvenOr0dd

Neat!

In the general case, setting 7(z) = R :: P(z) gives us:

T(z) F T(2) :: P(2)



All natural numbers are either even or odd (VI)

What is the context 7(s(k)) and theorem T(s(k))? We again start
with a template theorem with an empty proof:

Theorem (NaturalNumbersAreEvenOr0dd(s(k)))
s (k) :EvenOr0dd
Proof

Conclusion
s (k) :EvenOr0dd

Recall that we have the induction step to hand, which implies that
if k is an even or odd number then s(k) is an even or odd number:

Successors...(k) :: k:EvenOr0dd=>s (k) :EvenOr0dd



All natural numbers are either even or odd (VII)

The first devious bit...

If we are to make use of the induction step in order to assert the
consequent, namely the statement s(k) :Even0Or0dd, we must assert
the antecedent, namely the statement k:EvenOr0dd.

The second devious bit...

By what right are we able to assert k:Even0r0dd? Well, the proof of
this can only be NaturalNumbersAreEvenOr0dd (k). So our context has
to be recursive:

NaturalNumbersAreEvenOr0dd(k) :: k:EvenOr0dd,
Successors...(k) :: k:EvenOr0dd => s(k):EvenOr0Odd

If this seems a bit strange, remember that we haven't worked out
the pI’OOf of NaturalNumbersAreEvenOr0dd (k) yet!



All natural numbers are either even or odd (VIII)

If you think about it, the theorem has to take this form:

Theorem (NaturalNumbersAreEvenOr0dd(s(k)))
s (k) :EvenOr0dd
Proof
k:Even0r0dd from NaturalNumbersAreEvenOr0dd (k)
k:Even0r0dd => s(k):EvenOr0Odd from Successors... (k)
Conclusion
s(k) :EvenOr0dd by ModusPonens

Again, pretty neat.

So, in a similar vein to before, in the general case we set:

T(s(k)) = T(k) :: P(k),S(k) :: P(k) => P(s(k))



Parameterising contexts and labels (1)

Before moving on, we should note a new concept that has been
utilised along the way, namely the use of parameters in contexts
and labels.

You might ask why it is necessary to parameterise the context and
the label of the induction step. The following surely should suffice:

oS P(k) = P(s(k))

The answer is that we probably could get away without parameters
here. After all, normally when proving things by induction we just
refer to “the induction step”, which is really just an informal label
and obviously doesn't have a k in it.



Parameterising contexts and labels (I1)

In other situations, however, parameters are unavoidable. Recall
that we have proved the following:

T(2)F T(2) = P(z) 7(s(k))F T(s(k)):: P(s(k))

Here the contexts 7(z) and 7(s(k)) are markedly different, as are
the theorems T(z) and T(s(k)). But in the end we will need to
use the metavariables 7 and T with generality. Hence the need to
parameterise them.

Note that the value of the parameter in the first case, the one that
corresponds to the base case, is just the term z. And for the other
case, the one that corresponds to the induction step, it has been
deliberately chosen to be the term s(k) and not, as you might first
expect, just k. This keeps the two cases separate.



Metatheorems (1)

The other concept that has not been utilised yet, but has been
implicit in the argument so far, is the concept of a metatheorem.

Recall that we have concrete examples for all of the requisite
contexts and theorems. The concrete example for T(z) is, again:

Theorem (NaturalNumbersAreEvenOr0dd(z))
z:EvenOr0dd
Conclusion
z:Even0r0dd from ZeroIsEvenOr0dd

Now let's generalise it, replacing the label with T(z), etc:

Metatheorem (T(z))
P(z)
Conclusion
P(z) from R



Metatheorems (11)

And for the other theorem, replacing the label T(s(k)), etc.

Metatheorem (T(s(k)))
P(s(k))
Proof
P(k) from T(k)
P(k) => P(s(k)) from S(k)
Therefore
P(s(k)) by ModusPonens

Now the structure of both proofs, and their use of contexts, really
stands out. Especially this second one.

Think about it. In order to prove that 3 is even or odd, say, you
suppose that 2 is even or odd and then use the induction step. This
is exactly what is going on above.



All natural numbers are either even or odd (I1X)

Here we take the premises and define the contexts as expected.
Recall that we have the two metatheorems to hand, so the lines
after the context definitions can be verified:

Rule (Induction)
Premises
p F R::P(2)
o(k) F S(k)::P(k) => P(s(k))
Proof
let t(z) = R::P(2)
let t(s(k)) = S(k)::P(k) => P(s(k)), T(k)::P(k)
Therefore
t(m) F T(n)::P(n) by ProofByCases

Note that we are proving an inference rule and not a theorem, since
we want to be able to state “by induction”.



All natural numbers are either even or odd (X)

Lastly we fill in the remainder of the proof:

n=z V n=s(k)
Suppose
n=z
Then
t(z) F T(2)::P(2)
Hence
T(n) F T(n)::P(n)
n=z => T(n) F T(n)::P(n)
Suppose
n=s (k)
Then
t(s(k)) F T(s(k))::P(s(k))
Hence
t(n) F T(n)::P(n)
n=s(k) => T(n) F T(n)::P(n)



Conclusion

Let's make use of our new inference rule:

Theorem (NaturalNumbersAreEvenOr0dd(n))
Premises
ZeroIsEvenOr0Odd :: z:EvenOr(0dd
Successors...(k) :: k:EvenOr0dd => s(k):EvenOr0dd
Conclusion
n:EvenOr0Odd by Induction

One bonus is that we don't have to give the contexts for the base
case and induction step explicitly. If needed, the verifier would be
able infer them easily enough but in fact they are not needed.

So the form of the theorem is ideal, exactly what you write down
with pen and paper, albeit formally.



“Of course, what we think of as knowledge is always based on our
best efforts in the past to establish what is more likely than not to
be true, but it is inevitably combined with a legacy of accumulated
error sanctified by repetition, and we have learned that our constant
asymptotic progress toward Veritas requires that reason be used to
subject the authority of knowledge to continuous challenge.”

Al Gore



